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Faculty of Physics, University of Craiova, 13 Al. I. Cuza Str., Craiova 200585, Romania

E-mail: bizdadea@central.ucv.ro, manache@central.ucv.ro, osaliu@central.ucv.ro and
scsararu@central.ucv.ro

Received 10 June 2007
Published 14 November 2007
Online at stacks.iop.org/JPhysA/40/14537

Abstract
An irreducible canonical approach to second-order reducible second-class
constraints is given. The procedure is exemplified on gauge-fixed 3-forms.

PACS number: 11.10.Ef

1. Introduction

The canonical approach to systems with reducible second-class constraints is quite intricate,
demanding a modification of the usual rules as the matrix of the Poisson brackets among the
constraints is not invertible. Thus, it is necessary to isolate a set of independent constraints
and then construct the Dirac bracket [1, 2] with respect to this set. The split of the constraints
may lead to the loss of important symmetries, so it should be avoided. As shown in
[3–8], it is however possible to construct the Dirac bracket in terms of a noninvertible matrix
without separating the independent constraint functions. A third possibility is to substitute the
reducible second-class constraints by some irreducible ones and further work with the Dirac
bracket based on the irreducible constraints. This idea, suggested in [9] mainly in the context
of 2- and 3-form gauge fields, has been developed in a general manner only for first-order
reducible second-class constraints [10].

In this paper, we give an irreducible approach to second-order reducible second-class
constraints. Our strategy includes three main steps. First, we express the Dirac bracket for
the reducible system in terms of an invertible matrix. Second, we construct an intermediate
second-order reducible second-class system on a larger phase space and establish the equality
between the original Dirac bracket and that corresponding to the intermediate theory. Third,
we prove that there exists an irreducible second-class constraint set equivalent to the
intermediate one, such that the corresponding Dirac brackets coincide. These three steps
enforce the fact that the fundamental Dirac brackets derived within the irreducible and original
reducible settings coincide.
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The present paper is organized in five sections. In section 2, we briefly review the
procedure for first-order reducible second-class constraints. Section 3 is the ‘hard core’ of the
paper. Here, we approach second-order reducible second-class constraints by implementing
the three main steps mentioned above. In section 4, we exemplify in detail the general
procedure from section 3 in the case of gauge-fixed three-form gauge fields. Section 5 ends
the paper with the main conclusions.

2. First-order reducible second-class constraints: a brief review

2.1. Dirac bracket for first-order reducible second-class constraints

We start with a system locally described by N canonical pairs za = (qi, pi), subject to some
constraints

χα0(z
a) ≈ 0, α0 = 1, . . . , M0. (1)

For simplicity, we take all the phase-space variables to be bosonic. However, our analysis
can be extended to fermionic degrees of freedom modulo including some appropriate phase
factors. We choose the scenario of systems with a finite number of degrees of freedom only
for notational simplicity, but our approach is equally valid for field theories. In addition, we
presume that the functions χα0 are not all independent, but there exist some nonvanishing
functions Zα0

α1
such that

Zα0
α1

χα0 = 0, α1 = 1, . . . ,M1. (2)

Moreover, we assume that Zα0
α1

are all independent and (2) are the only reducibility relations
with respect to the constraints (1). These constraints are purely second class if any maximal,
independent set of M0 − M1 constraint functions χA (A = 1, . . . ,M0 − M1) among χα0 is
such that the matrix

C
(1)
AB = [χA, χB] (3)

is invertible. Here and in the following, the symbol [, ] denotes the Poisson bracket. In terms
of independent constraints, the Dirac bracket takes the form

[F,G](1)∗ = [F,G] − [F, χA]M(1)AB[χB,G], (4)

where M(1)ABC
(1)
BC ≈ δA

C . In the previous relations we introduced an extra index, (1), having
the role to emphasize that the Dirac bracket (4) is based on a first-order reducible second-
class constraint set. We can rewrite the Dirac bracket (4) without finding a definite subset of
independent second-class constraints as follows. We start with the matrix

C
(1)
α0β0

= [
χα0 , χβ0

]
, (5)

which clearly is not invertible because

Zα0
α1

C
(1)
α0β0

≈ 0. (6)

If āα1
α0

is a solution to the equation

āα1
α0

Z
α0
β1

≈ δ
α1
β1

, (7)

then we can introduce a matrix [6] M(1)α0β0 through the relation

M(1)α0β0C
(1)
β0γ0

≈ δα0
γ0

− Zα0
α1

āα1
γ0

≡ dα0
γ0

, (8)

with M(1)α0β0 = −M(1)β0α0 . Then, formula [6]

[F,G](1)∗ = [F,G] − [
F, χα0

]
M(1)α0β0

[
χβ0 ,G

]
(9)
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defines the same Dirac bracket like (4) on the surface (1). We remark that there exist some
ambiguities in defining the matrix M(1)α0β0 since if we make the transformation

M(1)α0β0 → M(1)α0β0 + Zα0
α1

qα1β1Z
β0
β1

, (10)

with qα1β1 some completely antisymmetric functions, then (8) is still satisfied.
At this stage it is useful to make some comments. First, we remark that relations (7)

and (8) yield

M(1)α0β0C
(1)
β0γ0

Z
γ0
β1

≈ 0, (11)

which ensures the fact that the rank of M(1)α0β0C
(1)
β0γ0

is equal to the number of independent
second-class constraints, i.e.

rank
(
M(1)α0β0C

(1)
β0γ0

) ≈ M0 − M1. (12)

Second, by means of (8) we deduce the relation[
χα0 ,G

](1)∗ ≈ −āα1
α0

[
Zβ0

α1
,G

]
χβ0 , (13)

which ensures [
χα0 ,G

](1)∗ = 0, for any G, (14)

on the second-class surface, as required by the general properties of the Dirac bracket.
Third, we remark that, in spite of the fact that the matrix C

(1)
α0β0

is not invertible, the Dirac
bracket expressed by (9) still satisfies Jacobi’s identity

[[F,G](1)∗, P ](1)∗ + [[P,F ](1)∗,G](1)∗ + [[G,P ](1)∗, F ](1)∗ ≈ 0 (15)

on surface (1). The proof follows the same line like in the irreducible case. Let

F̄ = F + uβ0χβ0 (16)

be a function such that[
F̄ , χα0

] ≈ 0. (17)

Thus, in order to construct F̄ we must solve the equation

uβ0C
(1)
β0α0

≈ −[
F, χα0

]
. (18)

Based on

dλ0
α0

χλ0 = χα0 , (19)

it follows in a simple manner that the solution to (18) is given by

uβ0 = [
F, χλ0

]
M(1)β0λ0 , (20)

which further leads to

F̄ = F +
[
F, χβ0

]
M(1)α0β0χα0 . (21)

Relying on (19) and (21), by direct computation we arrive at the relation

[[F,G](1)∗, P ](1)∗ ≈ [[F̄ , Ḡ], P̄ ], (22)

which indicates that identity (15) is ensured by Jacobi’s identity corresponding to the Poisson
bracket for the functions F̄ , Ḡ and P̄ . We mention that the key point of the proof of Jacobi’s
identity (15) is represented by relation (19).
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2.2. Irreducible analysis of first-order reducible second-class constraints

First-order reducible second-class constraints can be approached in an irreducible manner, as
has been shown in [10]. To this end, one starts from the solution to (7)

āα1
α0

= D̄α1
γ1

aγ1
α0

, (23)

where a
γ1
α0 are some functions chosen such that

rank
(
Zα0

α1
aγ1

α0

) = M1 (24)

and D̄β1
γ1

stands for the inverse of Zα0
α1

a
γ1
α0 . In order to develop an irreducible approach it is

necessary to enlarge the original phase space with some new variables
(
Yα1

)
α1=1,...,M1

, endowed
with the Poisson brackets[

Yα1 , Yβ1

] = �α1β1 , (25)

where �α1β1 are the elements of an invertible, antisymmetric matrix that may depend on the
newly added variables. Consequently, one constructs the constraints

χ̄α0 = χα0 + aα1
α0

Yα1 ≈ 0, (26)

which are second-class and, essentially, irreducible. Following the line exposed in [10], it can
be shown that the Dirac bracket associated with the irreducible constraints takes the form

[F,G](1)∗|ired = [F,G] − [
F, χ̄α0

]
µ(1)α0β0

[
χ̄β0 ,G

]
, (27)

and it is (weakly) equal to the original Dirac bracket (4),

[F,G](1)∗ ≈ [F,G](1)∗|ired. (28)

In (27) the quantities µ(1)α0β0 are the elements of an invertible, antisymmetric matrix, expressed
by

µ(1)α0β0 ≈ M(1)α0β0 + Z
α0
λ1

D̄
λ1
β1

�β1γ1D̄σ1
γ1

Zβ0
σ1

, (29)

with �β1γ1 the inverse of �α1β1 . Formula (28) is essential in our context because it proves
that one can indeed approach first-order reducible second-class constraints in an irreducible
fashion.

3. Second-order reducible second-class constraints

3.1. Reducible approach

3.1.1. Dirac bracket for second-order reducible second-class constraints. In the following,
we will generalize the previous approach to the case of second-order reducible second-class
constraints. This means that not all of the first-order reducibility functions Zα0

α1
are independent.

Beside the first-order reducibility relations (2), there appear also the second-order reducibility
relations

Zα1
α2

Zα0
α1

≈ 0, α2 = 1, . . . , M2. (30)

We will assume that the reducibility stops at order 2, so the functions Zα1
α2

are by hypothesis
taken to be independent. It is understood that Zα1

α2
’s define a complete set of reducibility

functions for Zα0
α1

. In this situation, the number of independent second-class constraints is
equal to M0 − M1 + M2. As a consequence, we can work with a Dirac bracket of the type (4),
but in terms of M0 − M1 + M2 independent functions χA

[F,G](2)∗ = [F,G] − [F, χA]M(2)AB[χB,G], A = 1, . . . ,M0 − M1 + M2, (31)
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where M(2)ABC
(2)
BC ≈ δA

C , with C
(2)
AB = [χA, χB]. It is obvious that the matrix

C
(2)
α0β0

= [
χα0 , χβ0

]
(32)

satisfies the relations

Zα0
α1

C
(2)
α0β0

≈ 0, (33)

so its rank is equal to M0 − M1 + M2.
Let Āα2

α1
be a solution of the equation

Z
α1
β2

Āα2
α1

≈ δ
α2
β2

(34)

and ω̄β1γ1 = −ω̄γ1β1 a solution to

Z
β1
β2

ω̄β1γ1 ≈ 0. (35)

We define an antisymmetric matrix ω̂α1β1 through the relation

ω̂α1β1 ω̄β1γ1 ≈ δα1
γ1

− Zα1
α2

Āα2
γ1

≡ Dα1
γ1

. (36)

Taking (35) into account, it results that ω̂α1β1 contains some ambiguities, namely it is defined
up to the transformation

ω̂α1β1 → ω̂α1β1 + Zα1
α2

qα2β2Z
β1
β2

, (37)

with qα2β2 some arbitrary, antisymmetric functions. On the other hand, simple computation
shows that the matrix Dα1

γ1
satisfies the properties

Āα2
α1

Dα1
γ1

≈ 0, Zγ1
γ2

Dα1
γ1

≈ 0, (38)

Zα0
α1

Dα1
γ1

≈ Zα0
γ1

, Dα1
γ1

D
γ1
λ1

≈ D
α1
λ1

. (39)

Based on the latter formula from (38) we infer an alternative expression for Dα1
γ1

, namely

Dα1
γ1

≈ Āα1
α0

Zα0
γ1

, (40)

for some functions Āα1
α0

. From the former relation in (39) and (40), we deduce that

Zγ0
γ1

Dα0
γ0

≈ 0, (41)

where

Dα0
γ0

≈ δα0
γ0

− Zα0
α1

Āα1
γ0

. (42)

At this stage, we can rewrite the Dirac bracket (31) without separating a specific subset of
independent constraints. In view of this, we introduce an antisymmetric matrix M(2)α0β0

through the relation

M(2)α0β0C
(2)
β0γ0

≈ Dα0
γ0

, (43)

such that the formula

[F,G](2)∗ = [F,G] − [
F, χα0

]
M(2)α0β0

[
χβ0 ,G

]
(44)

defines the same Dirac bracket like (31) on the surface (1). It is simple to see that M(2)α0β0

also contains some ambiguities, being defined up to the transformation

M(2)α0β0 → M(2)α0β0 + Zα0
α1

q̂α1β1Z
β0
β1

, (45)

with q̂α1β1 some antisymmetric, but otherwise arbitrary functions. Relations (30) and (41)
ensure that

rank
(
Dα0

γ0

) ≈ M0 − M1 + M2, (46)
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so the rank of M(2)α0β0C
(2)
β0γ0

is equal to the number of independent second-class constraints
also in the presence of the second-order reducibility. At the same time, we have that[

χα0 ,G
](2)∗ ≈ −Āα1

α0

[
Zβ0

α1
,G

]
χβ0 , (47)

so we recover the property
[
χα0 ,G

](2)∗ = 0 (for any G) on the surface of second-order
reducible second-class constraints. The fact that the Dirac bracket given by (44) satisfies
Jacobi’s identity can be proved like in the first-order reducible case. The analogous of the key
relation (19) from the first-order reducible situation is now Dα0

γ0
χα0 = χγ0 .

3.1.2. Dirac bracket in terms of an invertible matrix. Before expressing the Dirac bracket in
terms of an invertible matrix, we will analyze equations (34) and (35). The solution to (34)
can be written as

Āα2
α1

≈ D̄
α2
λ2

Aλ2
α1

, (48)

where Aλ2
α1

are some functions chosen such that the matrix

D
λ2
β2

= Z
α1
β2

Aλ2
α1

(49)

is of maximum rank,

rank
(
D

λ2
β2

) = M2, (50)

with D̄
α2
λ2

the inverse of D
λ2
β2

. (Strictly speaking, the solution to (34) has the general form
Āα2

α1
≈ D̄

α2
λ2

Aλ2
α1

+ uα2
α0

Zα0
α1

+ vα2λ1 ω̄λ1α1 , where uα2
α0

and vα2λ1 are arbitrary functions. By making
the redefinitions uα2

α0
= D̄

α2
λ2

ûλ2
α0

and vα2λ1 = D̄
α2
λ2

v̂λ2λ1 , with ûλ2
α0

and v̂λ2λ1 arbitrary, we can set
Āα2

α1
in the form Āα2

α1
≈ D̄

α2
λ2

(
Aλ2

α1
+ ûλ2

α0
Zα0

α1
+ v̂λ2λ1 ω̄λ1α1

)
. On the other hand, the functions Aλ2

α1

with the property that the rank of matrix (49) is maximum are defined up to the transformation
Aλ2

α1
→ A′λ2

α1
= Aλ2

α1
+ τλ2

α0
Zα0

α1
+ λλ2λ1 ω̄λ1α1 , in the sense that Z

α1
β2

Aλ2
α1

≈ Z
α1
β2

A′λ2
α1

, where τλ2
α0

and
λλ2λ1 are also arbitrary. Thus, we can always absorb the quantity ûλ2

α0
Zα0

α1
+ v̂λ2λ1 ω̄λ1α1 from Āα2

α1

by redefining Aλ2
α1

, such that we finally obtain solution (48).) Then, on the one hand we have
that

Dα1
γ1

≈ δα1
γ1

− Zα1
α2

D̄
α2
λ2

Aλ2
γ1

(51)

and on the other hand (inserting (48) in the former relation from (38)) we can write

Aσ2
α1

Dα1
γ1

≈ 0. (52)

Substituting (40) in (52), we are led to

Āα1
α0

Aα2
α1

≈ 0, (53)

which further implies

Āγ1
α0

Dα1
γ1

≈ Āα1
α0

. (54)

Based on the latter formula from (38), we find that the solution to (35) can be expressed as

ω̄β1γ1 ≈ D
τ1
β1

ω̃τ1λ1D
λ1
γ1

, (55)

where ω̃τ1λ1 is antisymmetric. Acting with Aα2
α1

on (36) and taking into account (52) and (55),
we reach the equation

Aα2
α1

ω̂α1β1 ω̄β1γ1 ≈ 0, (56)

whose solution can be chosen as

ω̂α1β1 = Dα1
ρ1

ω̃ρ1σ1Dβ1
σ1

, (57)
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with ω̃ρ1σ1 antisymmetric. (In fact, the general solution of (56) is given by ω̂α1β1 =
Dα1

ρ1
ω̃ρ1σ1Dβ1

σ1
+ Zα1

α2
uα2β2Z

β1
β2

, with uα2β2 arbitrary, antisymmetric functions. Since ω̂α1β1 are

defined up to transformation (37), we can always absorb the terms Zα1
α2

uα2β2Z
β1
β2

through a
redefinition of ω̂α1β1 and finally arrive at (57).) With the help of (52) and (57), it is easy to see
that

Aα2
α1

ω̂α1β1 ≈ 0. (58)

Except from being antisymmetric, the matrices ω̃τ1λ1 and ω̃ρ1σ1 are arbitrary at this point.
Nevertheless, they can be chosen to satisfy a series of useful properties, as the next theorem
proves.

Theorem 1. The matrices of elements ω̃τ1λ1 and ω̃ρ1σ1 can always be taken to satisfy the
following properties:

(a) (weak) invertibility,
(b) fulfillment of relation

ω̃ρ1σ1Dβ1
σ1

ω̃β1λ1 ≈ D
ρ1
λ1

, (59)

(c) (weak) mutual invertibility

ω̃ρ1σ1 ω̃σ1λ1 ≈ δ
ρ1
λ1

. (60)

Proof.

(a) Replacing the latter formula from (39) in (55) and (57), we infer the relations

D
τ1
β1

ω̄τ1λ1D
λ1
γ1

≈ D
τ1
β1

ω̃τ1λ1D
λ1
γ1

, (61)

Dα1
ρ1

ω̂ρ1σ1Dβ1
σ1

≈ Dα1
ρ1

ω̃ρ1σ1Dβ1
σ1

, (62)

with the help of which we further deduce

ω̃τ1λ1 ≈ ω̄τ1λ1 + D̄σ2
τ2

Aτ2
τ1
ωσ2γ2A

λ2
λ1

D̄
γ2
λ2

, (63)

ω̃ρ1σ1 ≈ ω̂ρ1σ1 + Zρ1
α2

ωα2β2Z
σ1
β2

, (64)

for some antisymmetric matrices ωσ2γ2 and ωα2β2 , taken to be invertible. Each of the
terms from the right-hand sides of formulae (63) and (64) displays null vectors. The null
vectors of ω̄τ1λ1 and ω̂ρ1σ1 are Zλ1

α2
and Aρ2

ρ1
respectively (see (35) and (58)), while the null

vectors of D̄σ2
τ2

Aτ2
τ1
ωσ2γ2A

λ2
λ1

D̄
γ2
λ2

and Zρ1
α2

ωα2β2Z
σ1
β2

are given by Ā
λ1
λ0

and Zσ0
σ1

respectively.
(The most general form of the null vectors of the matrices ω̄τ1λ1 and ω̂ρ1σ1 is Zλ1

α2
να2 and

Aρ2
ρ1

ξρ2 , respectively, with να2 and ξρ2 as arbitrary functions, but this does not affect our
proof.) For this reason, the only candidates for null vectors of ω̃τ1λ1 and ω̃ρ1σ1 are on the
one hand Zλ1

α2
and Aρ2

ρ1
respectively and on the other hand Ā

λ1
λ0

and Zσ0
σ1

respectively. We
show that none of these candidates are null vectors. Indeed, from (63) and (64) we find

Zλ1
α2

ω̃τ1λ1 ≈ D̄σ2
τ2

Aτ2
τ1
ωσ2α2 ≈ Āσ2

τ1
ωσ2α2 , (65)

Aρ2
ρ1

ω̃ρ1σ1 ≈ Dρ2
α2

ωα2β2Z
σ1
β2

. (66)

Since Dρ2
α2

, ωσ2α2 and ωα2β2 are invertible, they have no nontrivial null vectors. On the
other hand, the matrix Z

σ1
β2

Āσ2
σ1

is of maximum rank (see (34)), so neither Āσ2
τ1

nor Z
σ1
β2
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can display nontrivial null vectors (i.e. there are no nontrivial functions θσ2 or πβ2 such
that Āσ2

τ1
θσ2 ≈ 0 or Z

σ1
β2

πβ2 ≈ 0). In consequence, the objects Zλ1
α2

ω̃τ1λ1 and Aρ2
ρ1

ω̃ρ1σ1

from (65) and (66) cannot vanish, and therefore the matrices ω̃τ1λ1 and ω̃ρ1σ1 do not have
the functions Zλ1

α2
and Āρ2

ρ1
as null vectors respectively. Multiplying (63) and (64) by Ā

λ1
λ0

and Zσ0
σ1

respectively, we infer the relations

ω̃τ1λ1Ā
λ1
λ0

≈ ω̄τ1λ1Ā
λ1
λ0

, (67)

ω̃ρ1σ1Zσ0
σ1

≈ ω̂ρ1σ1Zσ0
σ1

. (68)

The right-hand sides of (67) and (68) vanish for

ω̄τ1λ1 = Aσ2
τ1

ε̄σ2γ2A
γ2
λ1

, (69)

ω̂ρ1σ1 = Zρ1
α2

ε̂α2β2Z
σ1
β2

, (70)

where ε̄σ2γ2 and ε̂α2β2 are antisymmetric. It is simple to see that ω̄τ1λ1 and ω̂ρ1σ1 given
by (69) and (70) cannot be brought to the form expressed by relations (55) and (57)
respectively for any choice of ε̄σ2γ2 or ε̂α2β2 . Thus, it follows that relations (69) and (70)
cannot hold, such that ω̄τ1λ1Ā

λ1
λ0

and ω̂ρ1σ1Zσ0
σ1

do not vanish. Therefore, neither ω̃τ1λ1 nor

ω̃ρ1σ1 (expressed by (63) and (64) respectively) have the functions Ā
λ1
λ0

and Zσ0
σ1

as null
vectors respectively, so they are invertible. This proves (a).

(b) By straightforward computation, it results

ω̃ρ1σ1Dβ1
σ1

≈ ω̂ρ1β1 , (71)

ω̂ρ1β1 ω̃β1λ1 ≈ ω̂ρ1β1 ω̄β1λ1 ≈ D
ρ1
λ1

, (72)

and hence

ω̃ρ1σ1Dβ1
σ1

ω̃β1λ1 ≈ D
ρ1
λ1

, (73)

which proves (b).
(c) Taking into account formulae (35), (36) and (58), from relations (63) and (64) we find

ω̃ρ1σ1 ω̃σ1λ1 ≈ D
ρ1
λ1

+ Zρ1
α2

ωα2β2ωβ2γ2A
λ2
λ1

D̄
γ2
λ2

. (74)

Now, we take the matrices ωσ2γ2 and ωα2β2 to be mutually inverse, namely

ωα2β2ωβ2γ2 ≈ δα2
γ2

. (75)

Substituting (75) into (74) and recalling formula (51), we deduce (60). This proves (c).

With these elements at hand, the next theorem is shown to hold. �

Theorem 2. There exists an invertible, antisymmetric matrix µ(2)α0β0 , in terms of which the
Dirac bracket (44) becomes

[F,G](2)∗ = [F,G] − [
F, χα0

]
µ(2)α0β0

[
χβ0 ,G

]
(76)

on the surface (1).

Proof. First, we observe that Dα0
γ0

given in (42) is a projector

Dα0
γ0

D
γ0
λ0

≈ D
α0
λ0

(77)

and satisfies the relations

Āγ1
α0

Dα0
γ0

≈ 0, Dα0
γ0

χα0 ≈ χγ0 . (78)
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Multiplying (43) by Ā
γ1
α0 and using (78), we obtain the equation

Āγ1
α0

M(2)α0β0C
(2)
β0γ0

≈ 0, (79)

which then leads to

Āγ1
α0

M(2)α0β0 ≈ f γ1β1Z
β0
β1

, (80)

for some functions f γ1β1 . Acting with D
τ0
β0

on (80) and taking into account (41), we reach the
relation

Āγ1
α0

M(2)α0β0D
τ0
β0

≈ 0, (81)

which combined with the former formula in (78) produces

M(2)α0β0D
τ0
β0

≈ λτ0β0D
α0
β0

, (82)

for some λτ0β0 . Applying now Dτ0
α0

on (43) and employing relation (82), we deduce

−λτ0α0Dβ0
α0

C
(2)
β0γ0

≈ Dτ0
γ0

. (83)

On the other hand, the latter formula from (78) ensures that

Dβ0
α0

C
(2)
β0γ0

≈ C(2)
α0γ0

, (84)

such that with the aid of the results expressed by (83) and (84) we find

−λτ0α0C(2)
α0γ0

≈ Dτ0
γ0

. (85)

Comparing (85) with (43) and recalling that the elements M(2)α0β0 are defined up to
transformation (45), we infer the relation

M(2)τ0α0 = −λτ0α0 , (86)

which inserted in (82) provides the equation

Dτ0
α0

M(2)α0β0 ≈ M(2)τ0α0Dβ0
α0

. (87)

Using once more the fact that the elements M(2)α0β0 are defined up to (45), from (87) it results

M(2)α0β0 ≈ D
α0
λ0

µ(2)λ0σ0Dβ0
σ0

, (88)

where the elements µ(2)λ0σ0 define an antisymmetric matrix. Based on the former formula
from (78) and on relation (88), we infer

Āγ1
α0

M(2)α0β0 ≈ 0. (89)

Replacing (77) in (88), we arrive at

D
α0
λ0

M(2)λ0σ0Dβ0
σ0

≈ D
α0
λ0

µ(2)λ0σ0Dβ0
σ0

, (90)

which leads to

µ(2)λ0σ0 ≈ M(2)λ0σ0 + Z
λ0
λ1

�λ1σ1Zσ0
σ1

, (91)

for some antisymmetric functions �λ1σ1 . At this point we show that the matrix µ(2)λ0σ0 can
indeed be taken to be invertible. If we choose �λ1σ1 as �λ1σ1 = ω̃λ1σ1 , where ω̃λ1σ1 is precisely
the invertible matrix given in (64), we get

µ(2)λ0σ0 ≈ M(2)λ0σ0 + Z
λ0
λ1

ω̃λ1σ1Zσ0
σ1

. (92)

In the following, we show that the matrix of elements

µ(2)
σ0ρ0

≈ C(2)
σ0ρ0

+ Āρ1
σ0

ω̃ρ1τ1Ā
τ1
ρ0

, (93)
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with ω̃ρ1τ1 the invertible matrix from (63), is nothing but the inverse of µ(2)λ0σ0 expressed
in (92). Indeed, relying on relations (33), (40), (43) and (89), by direct computation we find

µ(2)λ0σ0µ(2)
σ0ρ0

≈ Dλ0
ρ0

+ Z
λ0
λ1

ω̃λ1σ1Dρ1
σ1

ω̃ρ1τ1Ā
τ1
ρ0

. (94)

Employing theorem 1 (see (59)) and the former formula in (39), we deduce the relation

Z
λ0
λ1

ω̃λ1σ1Dρ1
σ1

ω̃ρ1τ1Ā
τ1
ρ0

≈ Z
λ0
λ1

Dλ1
τ1

Āτ1
ρ0

≈ Z
λ0
λ1

Āλ1
ρ0

, (95)

which replaced in (94) reduces to

µ(2)λ0σ0µ(2)
σ0ρ0

≈ δλ0
ρ0

. (96)

The above formula proves that the matrix of elements µ(2)λ0σ0 from (92) is (weakly) invertible
and therefore completes the proof of this theorem. �

Formula (76) plays a key role in what follows. It allows one to express the original
Dirac bracket (31), initially written only in terms of a subset of independent second-class
constraint functions, with the help of an invertible matrix, whose indices cover the whole
set of reducible second-class constraints. Inspired by this result, we will be able to find an
irreducible second-class constraint set, whose Dirac bracket is (weakly) equal to (76).

3.2. Irreducible approach

3.2.1. Intermediate system. Now, we introduce some new variables,
(
yα1

)
α1=1,...,M1

,
independent of the original phase-space variables za , with the Poisson brackets[

yα1 , yβ1

] = ωα1β1 , (97)

where the elements ωα1β1 define an invertible, antisymmetric (but otherwise arbitrary) matrix,
and consider the system subject to the reducible second-class constraints

χα0 ≈ 0, yα1 ≈ 0. (98)

(The elements ωα1β1 may depend at most on the newly added variables, just like the objects
�α1β1 from section 2.2.) The system subject to the second-class constraints (98) will be called
an intermediate system in what follows. The Dirac bracket on the larger phase space, locally
described by

(
za, yα1

)
, corresponding to the above second-class constraints reads as

[F,G](2)∗|z,y = [F,G] − [
F, χα0

]
µ(2)α0β0

[
χβ0 ,G

] − [
F, yα1

]
ωα1β1

[
yβ1 ,G

]
, (99)

where the Poisson brackets from the right-hand side of (99) contain derivatives with respect to
all za’s and yα1 ’s, and ωα1β1 denotes the elements of the inverse of ωα1β1 . On the one hand, the
most general form of a smooth function defined on the phase space with the local coordinates
(za, yα1) is

F
(
za, yα1

) = F0(z
a) + bλ1(za)yλ1 + bλ1ρ1(za)yλ1yρ1 + · · · , (100)

for some smooth functions bλ1(za), bλ1ρ1(za), etc. On the other hand, direct computation
yields

[F,G](2)∗ ≈ [F0,G0](2)∗, (101)

where the previous weak equality is defined on the surface (98). Moreover, equations (1)
and (98) describe the same surface, but embedded in phase spaces of different dimensions.
In other words, equations (1) and (98) are equivalent descriptions of the same surface of
constraints. For this reason, we will employ the same symbol of weak equality for both
descriptions. (It is understood that if we work with functions defined on the phase space of
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coordinates za , then we employ representation (1), but if we work with functions of
(
za, yα1

)
,

then we use (98).) Inserting (100) in (99) and taking (101) into account, we obtain

[F,G](2)∗|z,y ≈ [F,G](2)∗. (102)

We recall that the Dirac bracket [F,G](2)∗ contains only derivatives with respect to the original
variables za .

Formula (102) is important since together with (76) it opens the perspective toward the
construction of an irreducible second-class constraint system associated with the original,
second-order reducible one, but on the larger phase space

(
za, yα1

)
.

3.2.2. Irreducible system. Now, we choose ωγ1λ1 from (97) such that

ω̃α1β1 = Êγ1
α1

ωγ1λ1Ê
λ1
β1

, (103)

for an invertible matrix, of elements Ê
γ1
α1 , with the help of which we introduce the functions

Aρ1
σ0

= Êρ1
α1

Āα1
σ0

. (104)

Then, we have that

ω̃α1β1 = êα1
σ1

ωσ1τ1 êβ1
τ1

, (105)

where êα1
σ1

is the inverse of Ê
γ1
α1 . By means of (104), we find

Āα1
σ0

= Aρ1
σ0

êα1
ρ1

. (106)

In this context, the following theorem can be shown to hold.

Theorem 3. The elements êα1
σ1

and Ê
τ1
β1

can always be taken such that

Êα1
σ1

Dσ1
τ1

ê
τ1
β1

≈ D
α1
β1

. (107)

Proof. We choose Ê
α1
β1

such that

Aα1
α0

= σα0β0σ
α1β1Z

β0
β1

, (108)

where σα0β0 is invertible and σα1β1 is invertible and symmetric. If we take

Aα2
α1

= σα1λ1σ
α2β2Z

λ1
β2

, (109)

with σα2β2 invertible and σα1λ1 the inverse of σα1β1 , then we obtain that (50) is satisfied. (With
this choice of Aα2

α1
, we have that D

α2
λ2

= Z
α1
λ2

σα1λ1Z
λ1
β2

σα2β2 . Because Z
α1
λ2

has no nontrivial null

vectors, it follows that the matrix of elements Z
α1
λ2

σα1λ1Z
λ1
β2

is invertible. On the other hand,
σα2β2 is by hypothesis invertible, so D

α2
λ2

is the same, as required by (50).) Employing (108)
and (109) and recalling (30), we get

Aα2
α1

Aα1
α0

≈ 0. (110)

Expressing the first-order reducibility functions from (108) and (109)

Zα0
α1

= σα0β0σα1β1A
β1
β0

, Z
λ1
λ2

= σλ1τ1σλ2τ2A
τ2
τ1
, (111)

where σα0β0 and σλ2τ2 are the inverses of σα0β0 and σα2β2 respectively, we deduce

Zα0
α1

ê
α1
λ1

Z
λ1
λ2

= σα0β0σλ2τ2A
β1
β0

σα1β1 ê
α1
λ1

σλ1τ1Aτ2
τ1
. (112)

Formula (105) can be rewritten as ω̃α1β1 = êα1σ1 ω̌σ1τ1 ê
β1τ1 , with ω̌σ1τ1 = σσ1ρ1ω

ρ1γ1σγ1τ1 and
êα1σ1 = ê

α1
λ1

σλ1σ1 . Because the matrix σσ1ρ1 is symmetric and ωρ1γ1 antisymmetric, it follows



14548 C Bizdadea et al

that ω̌σ1τ1 is antisymmetric. The antisymmetry property of both ω̃α1β1 and ω̌σ1τ1 implies that
the quantities êα1σ1 can be taken to be symmetric

êα1σ1 = ê
α1
λ1

σλ1σ1 = êσ1α1 . (113)

(The other possibility, namely the antisymmetry of êα1σ1 , will not be considered in the
following.) By means of (113) we infer σα1β1 ê

α1
λ1

σλ1τ1 = ê
τ1
β1

, such that from (112) (and
also (106)) we find the relation

Zα0
α1

ê
α1
λ1

Z
λ1
λ2

= σα0β0σλ2τ2Ā
β1
β0

A
τ2
β1

. (114)

Substituting now (53) in (114), we obtain

Zα0
α1

ê
α1
λ1

Z
λ1
λ2

≈ 0. (115)

With relations (110) and (115) at hand, we are in a position to prove (107). If we make the
notation

D̂
α1
β1

= êα1
σ1

Dσ1
τ1

Ê
τ1
β1

, (116)

then it is easy to see that D̂
α1
β1

is a projector

D̂
α1
β1

D̂
β1
λ1

≈ D̂
α1
λ1

. (117)

On the other hand, with the aid of (104) and (110) we deduce

Āβ1
α0

D̂
α1
β1

≈ Āα1
α0

. (118)

Applying Zα0
α1

on (116) and using (115), it follows

Zα0
α1

D̂
α1
β1

≈ Z
α0
β1

. (119)

Multiplying (118) with Zα0
ρ1

and (119) with Āα1
α0

, we reach the equations

D̂
α1
β1

Dβ1
ρ1

≈ Dα1
ρ1

, D
α1
β1

D̂β1
ρ1

≈ Dα1
ρ1

. (120)

The general solution to equations (120) can be represented like

D̂
α1
β1

≈ D
α1
β1

+ Z
α1
λ2

Mλ2
τ2

A
τ2
β1

, (121)

for some matrix Mλ2
τ2

. Direct computation shows that

D̂
α1
β1

D̂
β1
λ1

≈ D
α1
λ1

+ Z
α1
λ2

Mλ2
τ2

D
τ2
β2

Mβ2
ρ2

A
ρ2
λ1

. (122)

Comparing (122) with (117) and employing (121), we find that Mλ2
τ2

are solutions to the
equations

Z
α1
λ2

Mλ2
τ2

D
τ2
β2

Mβ2
ρ2

A
ρ2
λ1

≈ Z
α1
λ2

Mλ2
τ2

A
τ2
λ1

. (123)

It is simple to see that equation (123) possesses two kinds of solutions, namely

Mλ2
τ2

= 0 (124)

and

Mλ2
τ2

= D̄λ2
τ2

(125)

respectively. If we take the second solution, (124), from (121), we obtain

D̂
α1
β1

≈ D
α1
β1

, (126)

which ensures (107). (Solution (125) leads to the equation êα1
σ1

Dσ1
τ1

Ê
τ1
β1

≈ δ
α1
β1

. This further
provides the relation D

σ1
β1

≈ δ
α1
β1

, which contradicts (51).) This proves the theorem. �
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Inserting (103)–(105) in (59) and recalling (107), it is easy to deduce the relation

ωα1τ1Dσ1
τ1

ωσ1β1 ≈ D
α1
β1

. (127)

On the other hand, formulae (103)–(105) indicate that µ(2)λ0σ0 and µ(2)
σ0ρ0

provided by (92)
and (93) take the form

µ(2)λ0σ0 ≈ M(2)λ0σ0 + Z
λ0
λ1

êλ1
σ1

ωσ1τ1 êγ1
τ1

Zσ0
γ1

, (128)

µ(2)
σ0ρ0

≈ C(2)
σ0ρ0

+ Aρ1
σ0

ωρ1τ1A
τ1
ρ0

. (129)

At this point, we have all the necessary ingredients (objects and their properties) for
unfolding the irreducible approach. We introduce the constraints

χ̃α0 = χα0 + Aα1
α0

yα1 ≈ 0, χ̃α2 = Zα1
α2

yα1 ≈ 0, (130)

defined on the larger phase space
(
z�, yα1

)
. In the following, we show that (130) display all

the desired properties: equivalence with the intermediate system (98), second-class behavior,
irreducibility and, most important, the associated Dirac bracket coincides (weakly) with the
original one, corresponding to the second-order reducible second-class constraints. The proof
of all these properties is contained within the next two theorems.

Theorem 4. Constraints (130) exhibit the following properties:

(i) equivalence to (98), i.e.(
χ̃α0 ≈ 0, χ̃α2 ≈ 0

) ⇔ (
χα0 ≈ 0, yα1 ≈ 0

); (131)

(ii) second-class behavior, i.e. the matrix

C��′ = [χ̃�, χ̃�′ ] (132)

is invertible, where

χ̃� = (
χ̃α0 , χ̃α2

); (133)

(iii) irreducibility.

Proof. Due to the equivalence (131), in what follows we will use the same symbol of weak
equality in relation with each constraint set (98) and (130).

(i) It is easy to see that if (98) holds, then (130) also holds:(
χα0 ≈ 0, yα1 ≈ 0

) ⇒ (
χ̃α0 ≈ 0, χ̃α2 ≈ 0

)
. (134)

By means of relations (104) and (107), from (130) we infer

χα0 = Dβ0
α0

χ̃β0 , yα1 = Zα0
γ1

êγ1
α1

χ̃α0 + Aβ2
α1

D̄
α2
β2

χ̃α2 . (135)

From (135) we obtain that if (130) is satisfied, then (98) is also valid(
χ̃α0 ≈ 0, χ̃α2 ≈ 0

) ⇒ (
χα0 ≈ 0, yα1 ≈ 0

)
. (136)

Relations (134) and (136) prove (i).
(ii) By means of (130) and (135), we find the Poisson brackets among the functions χ̃� in the

form [
χ̃α0 , χ̃β0

] ≈ µ
(2)
α0β0

,
[
χ̃α0 , χ̃β2

] ≈ Aα1
α0

ωα1β1Z
β1
β2

, (137)[
χ̃α2 , χ̃β2

] ≈ Zα1
α2

ωα1β1Z
β1
β2

, (138)
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where µ
(2)
α0β0

is given by (129). Then, the matrix C��′ takes the concrete form

C��′ =
(

µ
(2)
α0β0

Aα1
α0

ωα1β1Z
β1
β2

Zα1
α2

ωα1β1A
β1
β0

Zα1
α2

ωα1β1Z
β1
β2

)
, (139)

where � = (α0, α2) indexes the line and �′ = (β0, β2) the column. In order to prove
that C��′ is invertible, we will simply exhibit its inverse. Direct computation based on
relations (107), (110), (115), (127) and (128) shows that

C�′�′′ =
(

µ(2)β0ρ0 Zβ0
γ1

ê
γ1
σ1ω

σ1λ1A
τ2
λ1

D̄ρ2
τ2

D̄
β2
λ2

Aλ2
σ1

ωσ1λ1 ê
γ1
λ1

Zρ0
γ1

D̄
β2
λ2

Aλ2
σ1

ωσ1λ1A
τ2
λ1

D̄ρ2
τ2

)
, (140)

with µ(2)β0ρ0 as in (129) satisfies the relations

C��′C�′�′′ ≈
(

δρ0
α0

0

0 δρ2
α2

)
, (141)

and hence the matrix of elements (139) is invertible, its inverse being precisely (140).
This proves (ii).

(iii) As the matrix (139) is invertible, it possesses no nontrivial null vectors. In consequence,
the functions χ̃� are all independent, so the constraint set (130) is indeed irreducible.
This proves (iii). �

By means of result (140), the Dirac bracket associated with the irreducible second-class
constraints (130)

[F,G](2)∗|ired = [F,G] − [F, χ̃�]C��′
[χ̃�′,G] (142)

takes the concrete form

[F,G](2)∗|ired = [F,G] − [
F, χ̃α0

]
µ(2)α0β0

[
χ̃β0 ,G

] − [
F, χ̃α0

]
Zα0

γ1
êγ1
σ1

ωσ1λ1A
τ2
λ1

D̄β2
τ2

[
χ̃β2 ,G

]
− [

F, χ̃α2

]
D̄

α2
λ2

Aλ2
σ1

ωσ1λ1 ê
γ1
λ1

Zβ0
γ1

[
χ̃β0 ,G

]
− [

F, χ̃α2

]
D̄

α2
λ2

Aλ2
σ1

ωσ1λ1A
τ2
λ1

D̄β2
τ2

[
χ̃β2 ,G

]
. (143)

We observe that the first line from the right-hand side of (143) is generated by the first-
order reducibility relations (see (27)), while the remaining terms are due to the second-order
reducibility functions. Together with (130), formula (143) is the corner stone of our irreducible
approach. We will show that it coincides (weakly) with the Dirac bracket of the intermediate
system, and therefore with the original Dirac bracket for the second-order reducible second-
class constraints.

Theorem 5. The Dirac bracket with respect to the irreducible second-class constraints, (143),
coincides with that of the intermediate system

[F,G](2)∗|ired ≈ [F,G](2)∗|z,y . (144)

Proof. In order to prove the theorem we start from the right-hand side of (143) and show
that it is weakly equal to the right-hand side of (99). Using relations (104), (107), (128)
and (129), by direct computation we find that[
F, χ̃α0

]
µ(2)α0β0

[
χ̃β0 ,G

] ≈ [
F, χα0

]
µ(2)α0β0

[
χβ0 ,G

]
+

[
F, yα1

]
Dα1

σ1
ωσ1λ1D

β1
λ1

[
yβ1 ,G

]
, (145)[

F, χ̃α0

]
Zα0

γ1
êγ1
σ1

ωσ1λ1A
τ2
λ1

D̄β2
τ2

[
χ̃β2 ,G

] ≈ [
F, yα1

]
Dα1

σ1
ωσ1λ1

(
δ

β1
λ1

− D
β1
λ1

)[
yβ1 ,G

]
, (146)[

F, χ̃α2

]
D̄

α2
λ2

Aλ2
σ1

ωσ1λ1 ê
γ1
λ1

Zβ0
γ1

[
χ̃β0 ,G

] ≈ [
F, yα1

](
δα1
σ1

− Dα1
σ1

)
ωσ1λ1D

β1
λ1

[
yβ1 ,G

]
, (147)
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[
F, χ̃α2

]
D̄

α2
λ2

Aλ2
σ1

ωσ1λ1A
τ2
λ1

D̄β2
τ2

[
χ̃β2 ,G

] ≈ [
F, yα1

](
δα1
σ1

− Dα1
σ1

)
ωσ1λ1

(
δ

β1
λ1

− D
β1
λ1

)[
yβ1 ,G

]
.

(148)

Inserting the above relations into (143), we find (144). This proves the theorem. �

3.3. Main result

Combining (102) and (144), we reach the result

[F,G](2)∗ ≈ [F,G](2)∗|ired. (149)

The last formula proves that we can approach second-order reducible second-class constraints
in an irreducible fashion. Thus, starting with the second-order reducible constraints (1) we
construct the irreducible constraints (130), whose Poisson brackets form an invertible matrix.
Formula (149) ensures that the Dirac bracket within the irreducible setting coincides with that
from the reducible version. This is the main result of the present paper.

Moreover, the new variables, yα1 , do not affect the irreducible Dirac bracket as from (143)

we have that
[
yα1 , F

](2)∗|ired ≈ 0. Thus, the equations of motion for the original reducible
system can be written as ża ≈ [za,H ](2)∗|ired, where H is the canonical Hamiltonian. The
equations of motion for yα1 read as ẏα1 ≈ 0, and lead to yα1 = 0 by taking some appropriate
boundary conditions (vacuum to vacuum) for these unphysical variables. This completes
the general procedure.

4. Example

We exemplify the general results exposed in the above in the case of a field theory—gauge-fixed
3-forms, subject to the second-class constraints

χα0 ≡
(

−3∂i3πi3i1i2

−∂j3A
j3j1j2

)
≈ 0. (150)

Thus, the constraints (150) are second-stage reducible, the first- and the second-stage
reducibility matrices being respectively given by

Zα0
α1

=
(

Z
i1i2
k1

0

0 Z
l1
j1j2

)
, Zα1

α2
=

(
Zk1 0

0 Zl1

)
, (151)

with

Z
i1i2
k1

= δ
[i1
k1

∂i2], Z
l1
j1j2

= δ
l1
[j1

∂j2], Zk1 = ∂k1 , Zl1 = ∂l1 . (152)

The matrix of the Poisson brackets among the constraints (150) is expressed by

Cα0β0 =
(

0 �D
i3i4
i1i2

−�D
j1j2
j3j4

0

)
, (153)

where

D
i3i4
i1i2

= 1

2

(
δ

i3
[i1

δ
i4
i2] − δ

[i4
k ∂i3]δk

[i2
∂i1]

�

)
(154)

and � = ∂i∂i . If we take

Aβ2
α1

=
(

Zk1 0

0 Zl1

)
, (155)
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then we obtain

Dβ2
α2

= Zα1
α2

Aβ2
α1

=
(

� 0

0 �

)
, (156)

such that

D̄
α2
λ2

=
(

1
�

0

0 1
�

)
. (157)

We remark that A
β2
β1

given by (155) can be expressed like in (109) for

σα1β1 =
(

0 δ
k2
k1

δ
l1
l2

0

)
(158)

and

σα2β2 =
(

0 1
1 0

)
. (159)

With the help of (151) and (155)–(157), from (51) we find that

D
α1
β1

=
(

D
k1
k2

0
0 D

l2
l1

)
, (160)

where

Di
j = δi

j − ∂i∂j

�
. (161)

On the other hand, we can set D
α1
β1

in the form expressed by (40) by choosing

Ā
α1
β0

=
(

1
2�

Z
k1
i3i4

0

0 1
2�

Z
j3j4
l1

)
. (162)

Then, it is easy to see that

Zα0
α1

Ā
α1
β0

=
(

1
2�

δ
[i2
k1

∂i1]δ
k1
[i4

∂i3] 0

0 1
2�

δ
[j4
l1

∂j3]δ
l1
[j2

∂j1]

)
, (163)

such that with the aid of (42) we find

D
α0
β0

=
(

D
i1i2
i3i4

0

0 D
j3j4
j1j2

)
. (164)

Based on the fact that D
i1i2
i3i4

is a projector, i.e.

D
i1i2
i3i4

D
i3i4
j1j2

= D
i1i2
j1j2

, (165)

from (43) and (153) we obtain that

M(2)α0β0 =
(

0 − 1
�

D
i1i2
i3i4

1
�

D
j3j4
j1j2

0

)
. (166)

With the help of (44) and (166), we have that the fundamental Dirac brackets read as

[Aijk(x), πi ′j ′k′(y)](2)∗
x0=y0 = D

ijk

i ′j ′k′δ
D−1(x − y), (167)

[Aijk(x), Ai ′j ′k′
(y)](2)∗

x0=y0 = 0, [πijk(x), πi ′j ′k′(y)](2)∗
x0=y0 = 0, (168)
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where D
ijk

i ′j ′k′ is also a projector, expressed by

D
ijk

i ′j ′k′ = 1

3!

(
δi

[i ′δ
j

j ′δ
k
k′] − ∂ [iδ

j

l1
δ

k]
l2

∂[i ′δ
l1
j ′δ

l2
k′]

2�

)
. (169)

Formula (88) together with (164) and (166) provides

µ(2)α0β0 =
(

0 − 1
2�

δ
i1
[i3

δ
i2
i4]

1
2�

δ
j3
[j1

δ
j4
j2] 0

)
, (170)

which clearly exhibits that µ(2)α0β0 is invertible. By computing the fundamental Dirac brackets
with the help of (76) (with µ(2)α0β0 given by (170)), we reobtain precisely (167) and (168).

On the other hand, using the former relation in (151) as well as (166) and (170) into (92)
produces

ω̃γ1ρ1 =
(

0 1
2�2 δ

m1
m2

− 1
2�2 δ

n2
n1

0

)
. (171)

Simple computation shows that ω̃γ1ρ1 given in (171) is in agreement with (105) if we take

êγ1
σ1

=
(− 1

2�
δm1
p1

0

0 − 1
�

δs1
n1

)
(172)

and

ωσ1τ1 =
(

0 δ
p1
p2

−δs2
s1

0

)
. (173)

Consequently, the inverse of ê
γ1
σ1 of the form (172) reads as

Êσ1
τ1

=
(

−2δ
p1
p2 � 0

0 −δs2
s1
�

)
. (174)

Using (160), (172) and (174), we deduce that relation (107) is automatically verified. Based
on formula (104), from (162) and (174) it follows that

Aα1
α0

=
(−Z

k1
i1i2

0

0 − 1
2Z

j1j2
l1

)
. (175)

We remark that Aα1
α0

from (175) is expressed like in (108) for σα1β1 taken as the inverse
of (158) and

σα0β0 =
(

0 − 1
2δ

i3
[i1

δ
i4
i2]

− 1
4δ

j1
[j3

δ
j2
j4] 0

)
. (176)

The variables yα1 in the case of the model under investigation are given by

yα1 =
(

πk1

Al1

)
, (177)

where Ak is a vector field and πk its momentum, conjugated in the Poisson bracket induced
by (173). Replacing (150), (175) and (177) in the first relation from (130), we find the concrete
form of the irreducible constraints χ̃α0 ≈ 0:

χ̃
(1)
i1i2

≡ −3∂i3πi3i1i2 − ∂[i1πi2] ≈ 0, (178)
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χ̃ (2)j1j2 ≡ −∂j3A
j3j1j2 − 1

2∂ [j1Aj2] ≈ 0. (179)

Substituting the second relation from (151) together with (177) in the second formula
from (130), we find the irreducible constraints χ̃α2 ≈ 0 for the model under study as

χ̃ (1) ≡ ∂k1πk1 ≈ 0, χ̃ (2) ≡ ∂l1A
l1 ≈ 0. (180)

At this stage, we have constructed all the objects entering the structure of the irreducible Dirac
bracket (143). It is essential to remark that the irreducible second-class constraints are local.
If we construct the irreducible Dirac bracket and evaluate the fundamental Dirac brackets
among the original variables, then we finally obtain that these are expressed by relations (167)
and (168). This completes the analysis of gauge-fixed 3-form gauge fields.

5. Conclusion

To conclude with, in this paper we have exposed an irreducible procedure for approaching
systems with second-order reducible second-class constraints. Our strategy includes three
main steps. First, we express the Dirac bracket for the reducible system in terms of an invertible
matrix. Second, we establish the equality between this Dirac bracket and that corresponding
to the intermediate theory, based on the constraints (98). Third, we prove that there exists an
irreducible second-class constraint set equivalent with (98) such that the corresponding Dirac
brackets coincide. These three steps enforce the fact that the fundamental Dirac brackets
with respect to the original variables derived within the irreducible and original reducible
settings coincide. Moreover, the newly added variables do not affect the Dirac bracket, so
the canonical approach to the initial reducible system can be developed in terms of the Dirac
bracket corresponding to the irreducible theory. The general procedure was exemplified on
gauge-fixed 3-forms. Our procedure does not spoil other important symmetries of the original
system, such as spacetime locality for second-class field theories.
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